Computer Maintenance

Numbering Systems

Enabling Objectives

Introduction to numbering systems

- Base 10 (decimal)
- Base 2 (binary)
- Base 16 (hexadecimal)

Compare/Contrast decimal and binary counting

- Demonstrate conversions
 - Decimal to binary (2 methods)
 - Binary to decimal (2 methods)
 - Hexadecimal to Decimal

Enabling Objectives Cont.

- Basic hexadecimal numbering
 - Converting hexadecimal to Binary
 - Converting decimal to hexadecimal
 - Converting hexadecimal to decimal
 - Converting decimal to hexadecimal
 - Converting binary to hexadecimal

Numbering Systems Decimal (base 10) uses 10 symbols •0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Binary (base 2) uses 2 symbols **0**, 1 Hexadecimal (base 16) uses 16 symbols •0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Numbering Systems Base 10

Dase					
10^4	10^3	10^2	10^1	10^0	Decimal
10,000	1,000	100	10	1	
		4	2	6	426

Base 2

2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0	Decimal
128	64	32	16	8	4	2	1	
			1	0	0	1	1	19

Base 16					
16^4	16^3	16^2	16^1	16^0	Decimal
65,536	4,096	256	16	1	
		1	2	А	298

Binary Counting

Decimal	Binary	Decimal	Binary
0	0	13	1101
1	1	14	1110
2	10	15	1111
3	11	16	10000
4	100	17	10001
5	101	18	10010
6	110	19	10011
7	111	20	10100
8	1000	21	10101
9	1001	22	10110
10	1010	23	10111
11	1011	24	11000
12	1100	25	11001

Decimal to Binary Conversion Method 1

Convert the decimal number **192** into a binary number.

0	with a remainder of	96	=	192/2
0	with a remainder of	48	=	96/2
0	with a remainder of	24	=	48/2
0	with a remainder of	12	=	24/2
0	with a remainder of	6	=	12/2
0	with a remainder of	3	=	6/2
1	with a remainder of	1	=	3/2
1	with a remainder of	0	=	1/2

Write down all the remainders, backwards, and you have the binary number **11000000**.

Decimal to Binary Conversion Method 2

Convert the decimal number **192** into a binary number. First find the largest number that is a power of 2 that you can subtract from the original number. Repeat the process until there is nothing left to subtract.

192-128 =	64	128's used	1
64-64 =	0	64's used	1
		32's used	0
		16's used	0
		8's used	0
		4's used	0
		2's used	0
		1's used	0

Write down the 0s & 1s from top to bottom, and you have the binary number **11000000**.

Decimal to Binary Conversion Method 2

Convert the decimal number **213** into a binary number. First find the largest number that is a power of 2 that you can subtract from the original number. Repeat the process until there is nothing left to subtract.

213-128 =	85	128's used	1	
85-64 =	21	64's used	1	
*(32 cannot b	e sul	otracted from 21)	32's used	0
21-16 =	5	16's used	1	
*(8 cannot be	subt	tracted from 5)	8's used	0
5-4 =	1	4's used	1	
*(2 cannot be	subt	tracted from 1)	2's used	0
1-1 =	0	1's used	1	

Write down the 0s & 1s from top to bottom, and you have the binary number **11010101**.

Binary to Decimal Conversion Method 1

From right to left, write the values of the powers of 2 above each binary number. Then add up the values where a 1 exist.

Binary to Decimal Conversion Method 2

- •Start from the left with the first 1 in the binary number. Write down a 1 below it.
- •Then look at the next number to the right
 - if it is a 0, double the previous number and write it down
 - if it is a 1, double the previous number and add 1 to it, then write it down
- •Continue this until you reach the last 0 or 1 in the binary number.
- •The last number you write down is the decimal equivalent of the binary number.

Binary place value	128	64	32	16	8	4	2	1
Binary number					1	1	0	1
Conversion					1	3	6	<u>13</u>

Hexadecimal to Decimal Conversion

16^4	16^3	16^2	16^1	16^0	Decimal
65,536	4,096	256	16	1	
		1	2	А	298

- •Each number place represents a power of 16
- •Given the hexadecimal number 12A

Basic Hexadecimal Numbering

- Hexadecimal is the number system that is used to represent MAC addresses.
- It is referred to as <u>BASE 16</u> because it uses 16 symbols—0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
- Example—Convert hex 2F5A to decimal

16 ³	16 ²	16 ¹	16 ⁰
4096	256	16	1
2	F	5	А

 $(2 \times 4096) + ([F]15 \times 256) + (5 \times 16) + ([A]10 \times 1) = 12122$

Basic Hexadecimal Numbering

- One hexadecimal character can represent any decimal number between 0 and 15.
- In binary, F (15 decimal) is 1111 and A (10 decimal) is 1010.
- It follows that 4 bits are required to represent a single hexidecimal character in binary.
- <u>A MAC address is 48 bits long (6 bytes), which</u> translates to 48/4 = 12 hexadecimal characters required to express a MAC address.
- You can check this by typing winipcfg in Windows 95/98 or ipconfig /all in Windows NT/2000.

Basic Hexadecimal Numbering

- The smallest decimal value that can be represented by four hexadecimal characters,0000, is 0.
- The largest decimal value that can be represented by four hexadecimal characters, FFFF, is 65,535.
- It follows that the range of decimal numbers that can be represented by four hexadecimal characters (16 bits) is 0 to 65,535, a total of 65,536 or 2¹⁶ possible values.

Hexadecimal to Binary Conversion

To convert a hex number to a binary number, each hex bit represents 4 binary digits

Converting Decimal to Hexadecimal

Convert the decimal number 24032 to hex:

- 1. 24032 / 16 = 1502 with a remainder of 0
- 2. 1502 / 16 = 93 with a remainder of 14 or E
- 3. 93 / 16 = 5 with a remainder of 13 or D
- 4. 5 / 16 = 0 with a remainder of 5

By collecting all the remainders backward, you have the hex number **5DE0**.

Converting Hexadecimal to Decimal

Convert the hex number 3F4B to a decimal (work from left to right):

1. $3 \times 16^3 = 12288$ 2. $F(15) \times 16^2 = 3840$ 3. $4 \times 16^1 = 64$ 4. $B(11) \times 16^0 = 11$

16203 = decimal equivalent

Converting Decimal to Hexadecimal

Convert the decimal number 2750 to hex:

- 1. 2750 / 16 = 171 with a remainder of 14 or E
- 2. 171 / 16 = 10 with a remainder of 11 or B
- 3. 10 / 16 = 0 with a remainder of 10 or A

By collecting all the remainders backward, you have the hex number **ABE**.

Converting Binary to Hexadecimal

- Converting binary to hexadecimal and hexadecimal to binary is easy because 16 is a power of 2.
- Every four bits correspond to one hexadecimal digit.

BINARY HEX	BINARY HEX
0000 = 0	1000 = 8
0001 = 1	1001 = 9
0010 = 2	1010 = A
0011 = 3	1011 = B
0100 = 4	1100 = C
0101 = 5	1101 = D
0110 = 6	1110 = E
0111 = 7	1111 = F

Converting Binary to Hexadecimal

- So if you have a binary number that looks like 01011011, you break it into two groups of four bits, which looks like this: 0101 and 1011.
- When you convert these two groups to hex, they look like 5 and B (11).
- So converting 01011011 to hex is 5B.
- To convert hex to binary, do the opposite.
- Convert hex AC to binary. (Every hex character is 4 bits.)
- First convert hex A(10) to 1010 binary, and then convert hex C(12) to 1100 binary.
- So the conversion for hex AC is 10101100 binary.

Numbering Systems Summary

- Three numbering systems were discussed:
 - Decimal (base 10)
 - Binary (base 2)
 - Hexadecimal (base 16)
- Binary counting was explained
- Two methods of decimal to binary conversion were shown
- Two methods of binary to decimal conversion were shown

Numbering Systems Summary

- Basic hexadecimal numbering was discussed
- Methods were shown to convert:
 - Hexadecimal to binary
 - Decimal to hexadecimal
 - Hexadecimal to decimal
 - Binary to hexadecimal