Computer Maintenance

Numbering Systems

Enabling Objectives

- Introduction to numbering systems
-Base 10 (decimal)
-Base 2 (binary)
-Base 16 (hexadecimal)
-Compare/Contrast decimal and binary counting
-Demonstrate conversions
-Decimal to binary (2 methods)
-Binary to decimal (2 methods)
-Hexadecimal to Decimal

Enabling Objectives Cont.

- Basic hexadecimal numbering
- Converting hexadecimal to Binary
- Converting decimal to hexadecimal
- Converting hexadecimal to decimal
- Converting decimal to hexadecimal
- Converting binary to hexadecimal

Numbering Systems

-Decimal (base 10)
-uses 10 symbols

- $0,1,2,3,4,5,6,7,8,9$
-Binary (base 2)
-uses 2 symbols
-0, 1
-Hexadecimal (base 16)
-uses 16 symbols

$$
\cdot 0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F
$$

Numbering Systems Base 10

$\mathbf{1 0 \wedge} \mathbf{4}$	$\mathbf{1 0}^{\boldsymbol{\wedge}} \mathbf{3}$	$\mathbf{1 0}^{\boldsymbol{\wedge}} \mathbf{2}$	$\mathbf{1 0}^{\boldsymbol{\wedge}} \mathbf{1}$	$\mathbf{1 0}^{\wedge} \mathbf{0}$	Decimal
10,000	1,000	100	10	1	
		4	2	6	426

Base 2

$\mathbf{2}^{\wedge} \mathbf{7}$	$\mathbf{2}^{\wedge} \mathbf{6}$	$\mathbf{2}^{\wedge} \mathbf{5}$	$\mathbf{2}^{\wedge} \mathbf{4}$	$\mathbf{2}^{\wedge} \mathbf{3}$	$\mathbf{2}^{\wedge} \mathbf{2}$	$\mathbf{2}^{\wedge} \mathbf{1}$	$\mathbf{2}^{\wedge} \mathbf{0}$	Decimal
128	64	32	16	8	4	2	1	
			1	0	0	1	1	19

Base 16

$\mathbf{1 6 \wedge} \mathbf{4}$	$\mathbf{1 6}^{\boldsymbol{\wedge}} \mathbf{3}$	$\mathbf{1 6}^{\boldsymbol{\wedge}}$	$\mathbf{1 6}^{\boldsymbol{\wedge}} \mathbf{1}$	$\mathbf{1 6}^{\boldsymbol{\wedge}} \mathbf{0}$	Decimal
65,536	4,096	$\mathbf{2 5 6}$	16	1	
		1	2	A	298

Binary Counting

Decimal	Binary	Decimal	Binary
0	0	13	1101
1	1	14	1110
2	10	15	1111
3	11	16	10000
4	100	17	10001
5	101	18	10010
6	110	19	10011
7	111	20	10100
8	1000	21	10101
9	1001	22	10110
10	1010	23	10111
11	1011	24	11000
12	1100	25	11001

Decimal to Binary Conversion Method 1

Convert the decimal number 192 into a binary number.

192/2	=	96	with a remainder of
96/2	$=$	48	with a remainder of
48/2	$=$	24	with a remainder of
24/2	=	12	with a remainder of
12/2	=	6	with a remainder of
6/2	=	3	with a remainder of
3/2	=	1	with a remainder of
1/2	=	0	with a remainder of

Write down all the remainders, backwards, and you have the binary number 11000000.

Decimal to Binary Conversion Method 2

Convert the decimal number 192 into a binary number. First find the largest number that is a power of 2 that you can subtract from the original number. Repeat the process until there is nothing left to subtract.

$192-128=$	64	$128 ' s$ used	1
$64-64=$	$04 ' s$ used	1	
	32's used	0	
	16's used	0	
	8's used	0	
4's used	0		
	2's used	0	
1's used	0		

Write down the 0s \& 1s from top to bottom, and you have the binary number 11000000.

Decimal to Binary Conversion Method 2

Convert the decimal number 213 into a binary number. First find the largest number that is a power of 2 that you can subtract from the original number. Repeat the process until there is nothing left to subtract.

$$
\begin{gathered}
213-128=85 \quad 128 \text { 's used } \\
85-64=21 \quad 64 \text { 's used } \\
* *(32 \text { cannot be subtracted from } 21) \\
21-16=5 \quad 16 \text { 's used } \\
*(8 \text { cannot be subtracted from } 5) \\
5-4=1 \quad 4 \text { 's used }
\end{gathered}
$$

*(2 cannot be subtracted from 1)

$$
1-1=0 \quad 1 \text { 's used }
$$11

32's used01

8's used
0
1
2's used
0
1

Write down the 0s \& 1s from top to bottom, and you have the binary number 11010101.

Binary to Decimal Conversion Method 1

From right to left, write the values of the powers of 2 above each binary number. Then add up the values where a 1 exist.

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
128	64	32	16	8	4	2	1
1	0	1	1	0	1	0	1
$128+32+16+4+1=181$							

Binary to Decimal Conversion Method 2

-Start from the left with the first 1 in the binary number. Write down a 1 below it.
-Then look at the next number to the right

- if it is a 0 , double the previous number and write it down
- if it is a 1 , double the previous number and add 1 to it, then write it down
-Continue this until you reach the last 0 or 1 in the binary number.
-The last number you write down is the decimal equivalent of the binary number.

Binary place value	128	64	32	16	8	4	2	1
Binary number					1	1	0	1
Conversion					1	3	6	$\underline{\mathbf{1 3}}$

Hexadecimal to Decimal Conversion

Base 16

$\mathbf{1 6}^{\boldsymbol{\wedge}} \mathbf{4}$	$\mathbf{1 6}^{\boldsymbol{\wedge}} \mathbf{3}$	$\mathbf{1 6}^{\boldsymbol{\wedge}} \mathbf{2}$	$\mathbf{1 6}^{\boldsymbol{}} \mathbf{1}$	$\mathbf{1 6}^{\wedge} \mathbf{0}$	Decimal
65,536	4,096	256	16	1	
		1	2	A	298

-Each number place represents a power of 16
-Given the hexadecimal number 12A
-1 X $256=256$

- $2 \times 16=32$
- $\mathrm{A} \times 1 \frac{=+10}{298} \quad(\mathrm{~A}=10 \mathrm{in}$ hex $)$

Basic Hexadecimal Numbering

- Hexadecimal is the number system that is used to represent MAC addresses.
- It is referred to as BASE 16 because it uses 16 symbols- $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$.
- Example-Convert hex 2F5A to decimal

16^{3}	16^{2}	16^{1}	16^{0}
4096	256	16	1
2	F	5	A

$(2 \times 4096)+([\mathrm{F}] 15 \times 256)+(5 \times 16)+([\mathrm{A}] 10 \times 1)=12122$

Basic Hexadecimal Numbering

- One hexadecimal character can represent any decimal number between 0 and 15 .
- In binary, F (15 decimal) is 1111 and A (10 decimal) is 1010.
- It follows that 4 bits are required to represent a single hexidecimal character in binary.
- A MAC address is 48 bits long (6 bytes), which translates to $48 / 4=12$ hexadecimal characters required to express a MAC address.
- You can check this by typing winipcfg in Windows 95/98 or ipconfig /all in Windows NT/2000.

Basic Hexadecimal Numbering

- The smallest decimal value that can be represented by four hexadecimal characters,0000, is 0 .
- The largest decimal value that can be represented by four hexadecimal characters, FFFF, is 65,535.
- It follows that the range of decimal numbers that can be represented by four hexadecimal characters (16 bits) is 0 to 65,535 , a total of 65,536 or 2^{16} possible values.

Hexadecimal to Binary Conversion

To convert a hex number to a binary number, each hex bit represents 4 binary digits

Given the hex number A 3
A is the decimal number 10
10 in binary is 1010

8	4	1	
1	0	1	0

3 is the decimal number 3
3 in binary is 0011

Converting Decimal to
 Hexadecimal

Convert the decimal number 24032 to hex:

1. $24032 / 16=1502$ with a remainder of 0
2. $1502 / 16=93$ with a remainder of 14 or E
3. $93 / 16=5$ with a remainder of 13 or D
4. $5 / 16=0$ with a remainder of 5

By collecting all the remainders backward, you have the hex number 5DE0.

Converting Hexadecimal to Decimal

Convert the hex number 3F4B to a decimal (work from left to right):

1. $3 \times 16^{3}=12288$
2. $F(15) \times 16^{2}=3840$
3. $4 \times 16^{1}=64$
4. $B(11) \times 16^{0}=11$

16203 = decimal equivalent

Converting Decimal to Hexadecimal

Convert the decimal number 2750 to hex:

1. $2750 / 16=171$ with a remainder of 14 or E
2. $171 / 16=10$ with a remainder of 11 or B
3. $10 / 16=0$ with a remainder of 10 or A

By collecting all the remainders backward, you have the hex number ABE.

Converting Binary to Hexadecimal

- Converting binary to hexadecimal and hexadecimal to binary is easy because 16 is a power of 2 .
- Every four bits correspond to one hexadecimal digit.

BINARY HEX
$0000=0$
$0001=1$
$0010=2$
$0011=3$
$0100=4$
$0101=5$
$0110=6$
$0111=7$

BINARY HEX
$1000=8$
$1001=9$
$1010=\mathrm{A}$
$1011=\mathrm{B}$
$1100=\mathrm{C}$
$1101=\mathrm{D}$
$1110=\mathrm{E}$
$1111=\mathrm{F}$

Converting Binary to Hexadecimal

- So if you have a binary number that looks like 01011011, you break it into two groups of four bits, which looks like this: 0101 and 1011.
- When you convert these two groups to hex, they look like 5 and B (11).
- So converting 01011011 to hex is 5B.
- To convert hex to binary, do the opposite.
- Convert hex AC to binary. (Every hex character is 4 bits.)
- First convert hex A(10) to 1010 binary, and then convert hex C(12) to 1100 binary.
- So the conversion for hex AC is 10101100 binary.

Numbering Systems Summary

- Three numbering systems were discussed:
- Decimal (base 10)
- Binary (base 2)
- Hexadecimal (base 16)
- Binary counting was explained
- Two methods of decimal to binary conversion were shown
- Two methods of binary to decimal conversion were shown

Numbering Systems Summary

- Basic hexadecimal numbering was discussed
- Methods were shown to convert:
- Hexadecimal to binary
- Decimal to hexadecimal
- Hexadecimal to decimal
- Binary to hexadecimal

